page contents

sites

Tuesday, 12 February 2013

Dialysis


Source(google.com.pk)
Dialysis Biography

dialysis (dĪălˈĭsĭs) [key], in chemistry, transfer of solute (dissolved solids) across a semipermeable membrane. Strictly speaking, dialysis refers only to the transfer of the solute; transfer of the solvent is called osmosis. Dialysis is frequently used to separate different components of a solution. For example, a solution of starch and sodium chloride in water can be separated by placing the mixture in a vessel on one side of a semipermeable membrane and placing pure water on the other side. The smaller particles of sodium chloride (which dissolve in water to form sodium and chloride ions) will diffuse across the membrane; diffusion of the much larger starch particles (which are not truly in solution but are in colloidal suspension) is hindered and may be completely prevented. By continuously or periodically replacing the solvent with fresh solvent, almost all of the sodium chloride can be removed. The method was originated by Thomas Graham, who termed the substance that remained within the membrane a colloid and the substance that diffused a crystalloid.
An extension of the method makes possible the separation of mixed colloids by the use of a semipermeable membrane (usually synthetic) of known selectivity, i.e., one that will permit the diffusion of one colloid and hinder the diffusion of others. Mixed macromolecules, such as proteins, may be similarly separated. By the use of graded semipermeable membranes chosen to allow successively smaller molecules to pass, mixtures can be separated into components of graded ranges of molecular weight.

Monday, 11 February 2013

Kidney Transplantation

Source(google.com.pk)
Kidney Transplantation Biography
An organ transplant is the transferring of an organ from the donor's body to the patient’s body in place of receivers absent or damaged organ to activate it again. There are three types of grafting process which are applied during organ transplantation. If the organs or tissues are taken from the same patient’s body to which it will be transplanted, this grafting process is called auto graft. If the organs or tissues are taken from the donor's body into the patient’s body within same species, this grafting process is called allograft. If the donor is selected from different species of the receiver, this grafting process is called Xenograft.
The donor may be living or not in allograft process. If the donor is not living then it has a specific time limit before damaging the transplanting organs or tissues. Organs which are usually transplanted widely are liver, pancreas, kidneys, lungs, intestines etc. Tissues are collected from special parts of the body such as skins, veins, bones, cornea, and heart valves etc. kidney is the most usual organ which is transplanted for worldwide purposes.

In case of living donor, brain must be dead. For that reason parts of the brain which regulate breathing and heart beat are collapsed during transplantation. Breathing and heartbeat is controlled by artificial system for that time. But that is a tough job for the doctors. Because every patient does not have same capability to maintain breathing by artificial means. They go through the path of death. So it must be ensured that weak donor's are rejected as much as possible.

Tissues are collected from the donor within 24 hours through temporary cessation of their cardiac system. But the collected tissues from any organ except corneal tissues can be preserved or stored for at least five years. It is obviously good news for everybody. Those preserved tissues are found from the organ bank when we need them. Government has its strict regulation for the safety of proper organ transplantation. Otherwise, communicable diseases are spread out over generation to generation.

Most of the times living donor's are relatives or near and dear ones of the patient. Emotional matters are very much effective over the risks of the donor’s life. Psychologically they are strong in those cases. Donors have no concern about their own life but they want to save the life of their nearest people. So doctors should be concerned about those cases that they must not accept that types of donors which are not physically fit. Paired exchange is done by stereotyping for the living donor.

It is a compatibility test procedure between donor and receiver. Cross matching and blood incompatibility are identified by this technology. Sometimes donors are inspired to give their organs or body parts by attractive amount of money. This is unethical and unexpected matter for modern science. Transplantation medicine is a gainsaying area of modern science. Transplant rejection may occur in the patient’s body. Sometimes the immune system of the patient’s body works against transplanting body parts. In this case the transplanting organ is removed from the patient immediately. Organ transplantation brings happiness to many people by transplanted getting a new organ and a new life.

Renal Insufficiency

Source(google.com.pk)
Renal Insufficiency Biography
Symptoms and causes of kidney failure
The symptoms of kidney failure or kidney problems appears slowly over a long period of time, so they can easily go unnoticed or thought to be normal stress. Knowing the symptoms of kidney failure can help you recognize the problems and then get proper treatment. If you experience any symptom of kidney failure, you should at once discuss it with your doctor and not ignore it. The symptoms of kidney failure or kidney problems are swelling, weakness, fatigue, feeling cold, shortness of breath, changes in urination, rash or itchy dry skin, restless, cramped or sore legs, metallic taste in the mouth, loss of taste and nausea.
When kidneys are failing, excess fluids build up in the body and this leads to a condition in which the hands, ankles, feet, face swells up. This fluid can also collect in the lungs, which then causes shortness of breath. Kidney failure can slow down the production of a hormone which leads to a low red blood cell count. This can cause anemia, which makes you feel tired very quickly. Your kidneys make urine, so kidney failure can cause the urine to change. Urination problems include bloody urine, more or less urine than usual, a change in how often you urinate, or a pressure or difficulty in urinating. When kidneys fail, the buildup of waste in your blood can cause rashes or severe itching. Buildup of waste in the blood can make your food taste different or cause bad breath, which leads to loss of appetite, vomiting, nausea and weight loss.

There are many causes of kidney failure. Kidney failure mostly occurs because of acute situations or chronic problems. Diabetes and high blood pressure are the two common causes of kidney failure. A family history of kidney problem can also increase your risk of developing the disease. Diabetes damages the blood vessels in your body and makes it difficult for the kidneys to function properly. High blood pressure if left untreated can exert added force and cause damage to the glomeruli which filters the waste from your blood. Kidney stones are also a cause for kidney failure. Kidney stones are crystallized minerals and other substances that can form on the inner surface of the kidneys and over time become small, hard masses. Most of these conditions that lead to kidney failure occur over a long period of time and can cause damage to both the kidneys. You need to be aware, that even if further deterioration can be stopped, the damage already done is usually permanent. Your doctor can work with you to find the best treatment options that suits your case and needs.

Liver Disease

Source(google.com.pk)
Liver Disease Biography
Viruses are smaller in size to bacteria and can also be described as nano particle stating its small size. Viruses are parasitic in nature as they always depend on a host cell or organism for replication. Viruses are known for its infectious nature, infecting right from bacteria to humans.

Virus grouping: Viruses are divided and grouped into various types using the key factors like morphology (structure), biological role, type of genetic material and mode of multiplication. The unique feature of virus is that their genetic material is covered by a protective layer termed as capsid made up of units of protein encoded by the virus itself. The association of the capsid and the genetic material (nucleocapsid) describes the structure of the virus. The viral structure has an outer envelope made up of lipoproteins and the space between the capsid and the envelope is called as Matrix which acts as a bridge between the inner nucleocapsid and the outer envelope. The matrix region is composed of proteins again.

Viruses are classified based on the type of genetic material present into DNA virus and RNA virus. DNA virus, as the name indicates have DNA as their genetic material and the DNA is either linear or circular and double stranded or single stranded. Based on the length of the genetic material present, these viruses are again divided into big and small DNA viruses. Herpes virus and pox virus are examples of double stranded DNA virus and parvo virus is single stranded DNA virus. The virus with RNA as genetic material are grouped under RNA viruses and the RNA present may be double stranded or single stranded. Also the single stranded RNA virus may have either cationic or anionic strand. Reo virus is an example of double stranded RNA virus and picorna virus is a positive single stranded RNA virus and Rhabdo virus falls under the group of negative single stranded RNA virus.

Viral Life Cycle: Virus is host specific and this nature enables them to bind themselves to the host cell. Once attached it penetrates and enters the host cell environment. The outer envelope is shed inside the host cell and mRNA is synthesized through transcription which is followed by translation into proteins. Following this is the glycosylation process and the replication begins resulting in multiple viral copies, which then assemble and exits the host cell as mature viruses.

Viral Infections: The potential of a virus to cause infection to the host cell is termed as virulence. Viruses infect bacteria, plants, animals and humans causing various reversible and irreversible diseases.
Humans: Eye infection caused by Herpes simplex virus, cytomegalo virus, encephalitis by LCM virus, Rabies virus and the occurrence of common cold is due to para influenza virus, respiratory syncytial virus. The Hepatitis virus of different groups A, B, C, D & E in causing hepatitis, a liver disease and Coxsackie B virus is identified in pancreatitis. Infection by rota virus, adeno virus and corona virus causes GI tract related diseases. HIV, Herpes simplex 2 and Human Papilloma virus are the major causative agents for the sexually transmitted diseases.

Plants: Plant viruses have different shapes like icosahedral, rod, filament or isometric. Some of the plant viruses are Tobacco Mosaic virus, cucumber mosaic virus, Lettuce mosaic virus and citrus psorosis virus. The viruses are named based on the type of disease they cause in plants.

Birds and Animals: The H1N1 episode due to the infection of birds by Influenza virus A and the infection of pigs by influenza virus (B or C) spreading swine flu are the classic examples of bird and animal viruses and their transmission to humans.

Bacteria: virus with a potential to infect bacteria is called as a bacteriophage. T4, T5, T7 phages, MS2 phage and Qβ phage are examples of the bacteriophages. The structure of a bactriophage is unique with three regions like icosahedral shape as head with shaft like middle region and tail like structures at the base.

Cancer and virus: Few viruses are detected with their ability to cause cancer in humans. The cancer causing oncogenes were first identified and studied in retrovirus. The human Papilloma virus causes cervical cancer and the chronic liver disease due to the infection by Hepatitis B virus activates the liver cells to become cancerous.

The structure, function and mode of replication enabled scientists to make use of viruses in different field of biological science. The ability of the virus to deliver the genetic material into host made them as suitable vectors in genetic engineering. The association of the virus with the immune system enabled to develop vaccines for various viral diseases. The use of virus in the field of nanotechnology is cited by the use of cowpea mosaic virus as signal amplifiers in DNA microarray technique by the researchers of Naval Research laboratory, Washington, D.C. The different perspective on virus as a tool in cancer therapy and gene therapy will be beneficial. The ability of the virus to infect bacterial cell is used to kill pathogenic bacteria (Phage therapy). Besides all this beneficial applications of virus, the threat lies in the fact that they can be used as bioweapons.

Liver Failure

Source(google.com.pk)
Liver Failure Biography
Liver is a multitasking organ in the body being able to synthesise several plasma proteins, immune factors as well as several metabolising enzymes and factors helping in digestion and excretion within the body. Hence, on liver failure several severe complications are noticed in the body affecting several other organs like kidney, brain, and even causing ultimate death. Although, liver transplantation remains the ultimate solution in case of Acute Liver Failure (ALF) but due to shortage in the availability of donors, other methods to support the liver functions are being devised. Doctors have made progress in the replacement of the different damaged organs within the body with artificial devices when transplantation becomes an issue due to unavailability of the donors or organs. In case of ALF also, Artificial Liver Support Devices (ALSDs) have been developed, which provide a temporary solution between the ALF and liver transplantation or liver regeneration from the donor liver hepatocytes, which have the capacity to regenerate the whole liver and restore its function by continuous proliferation.

ALSDs are based on the idea of removal of toxic substances from the blood. These may be of two types: Non-Biological LSDs and Biological LSDs. The Non-biological LSDs mainly remove the excretory wastes from the body based on the dialysis and filtration principle. It was found that they provide temporary solution and are not much efficient as they are unable to restore other important functions of liver because of which the patients could not survive for long. This led to the idea of development of LSDs, which are biological in nature and could provide long-lasting solution for the survival of the ALF patients. The synthetic, metabolic as well as excretion functions of the liver are being restored largely by the biological LSDs, hence research on bio artificial liver devices is making progress.

The Bio artificial livers are support devices connected to the patients’ plasma circulation outside the body. They are liver cells charged bioreactors, which help in restoring almost all the main functions of the liver. The bioreactors mainly consist of porcine or human hepatocytes, which are parenchymal in nature. However, for the optimum function of the bioreactors, they must contain mixed differentiated cells whereby the liver cells possess 3D configuration. The bioreactors are of four types: hollow fiber types; suspension or encapsulation; monolayer and scaffolds. The bioreactors are mainly used for the improvement in the cell oxygenation as well as mass- exchange. In most of the cases, it is seen that the bioreactors do not consist of the biliary system, which aids in the excretion of conjugated bilirubin. Hence, for proper excretion of this bilirubin, an artificial mode is attached to the bioreactors, which help in the removal of this bilirubin, thereby preventing toxicity.

The bio artificial livers consist mainly of the freshly isolated or cryopreserved porcine hepatocytes as they are easily available. Though, they may provide reliable data regarding the restoration of function of the liver function due to similar biologic properties like human hepatocytes, but there are a number of disadvantages regarding their use. The xenozoonosis i.e xeno transplantation effect due to using cells of different species causes unreliability in the data observed by using porcine hepatocytes in the bioreactors. The transmission of the pathogens like porcine retrovirus also is another added disadvantage in their use. Hence, freshly isolated human hepatocytes must be used as cryopreservation of the same causes the loss of the enzyme function largely. The research carried out using human-origin hepatocytes provides reliable data regarding the advantages in using bioreactors in the treatment of ALF. Immortal hepatocytes developed from hepatoblastoma cell line or other tumor cells have also been developed for the study of bioreactors, though the possible toxicity resulting from using such cells cannot be ignored. Hepatocytes have also been developed from the tissues slices of the discarded donor livers, though their availability at the required time cannot be guaranteed.

The clinical proofs regarding the use of bio artificial livers are not much favourable in the present scenario. The hepatocytes used in the bioreactors may not always be completely differentiated ensuring proper function nor are they always present in 3D conformation. Moreover, the patients used for clinical trials are diverse in nature; hence, the resulting statistical data may not provide concrete positive result. The bioartificial livers may provide bridge in the treatment of the patients until the availability of the liver to be transplanted, but the lasting effect of the use of bioartificial livers on the patients after transplantation has not yet been proved completely. The clinical trials with the human hepatocytes are going on and much research is needed before the bio artificial livers can be successfully used in the treatment of the ALF patients.

Liver Problems

Source(google.com.pk)
Liver Problems Biography
Conducting research into: liver cancer, liver injury, liver immunology, alcoholic liver disease, liver cell biology and molecular hepatology.

Chronic Liver damage affects up to 20% of our population. It has many causes - viral infections (Hepatitis B and C), toxins, genetic, metabolic and autoimmune diseases.

Recently the onset of liver disease has also been linked to diabetes and obesity, two health problems which are increasing significantly in Australia.

Liver cancer, which is often caused by chronic liver damage, is one of the fastest growing diseases in our community. The rate of liver cancer in Australia has increased four-fold in the past 20 years. Sadly this trend is expected to continue.

An increased understanding of the liver diseases that lead to cancer and chronic liver failure is essential in bringing forth new treatments.

The Centenary institute is working on liver health and disease from five key perspectives.


How inflammation drives fibrosis, or hardening of the liver, which can lead to scarring (cirrhosis) and finally liver cancer

How liver damage leads to liver failure or liver cancer, so we can slow down the progression of liver disease

Liver injury and cancer in those suffering with type 2 diabetes

Diagnostics and therapies for Alcoholic Liver Disease, as well as genetic risk factors

The unique immune response of the liver to improve liver transplantation and clear chronic infections like Hep B & Hep C
Centenary Institute has recruited one of the world’s most exciting teams of highly qualified researchers and specialist clinicians to find out what causes liver disease and how to control it.
Make a monetary liver donation to fight liver cancer today! Your donation will help Australian researchers understand this disease & find a cure.
Minimal encephalopathy was originally associated with chronic liver disease but is increasingly associated with most other chronic diseases and particularly with diabetes and also chronic disorders in other organs: kidneys, lungs, thyroid and with obesity. It is increasingly with dramatically increased and more or less permanent increase in systemic inflammation, most likely a result of Western lifestyle. Frequent physical exercise and intake of foods rich in vitamins, antioxidants, fibres, lactic acid bacteria etc in combination with reduction in intake of refined and processed foods is known to reduce systemic inflammation and prevent chronic diseases. Some lactic acid bacteria, especially Lb paracasei, lb plantarum and pediococcus pentosaceus have proven effective to reduce inflammation and eliminate encephalopathy. Significant reduction in blood ammonia levels and endotoxin levels were reported in parallel to improvement of liver disease. Subsequent studies with other lactic acid bacteria seem to demonstrate suppression of inflammation and one study also provides evidence of clinical improvement.

Saturday, 9 February 2013

Diagnosis Of Cancer

Source(google.com.pk)
Diagnosis Of Cancer Biography
One of the common emotions or feelings that survivors experience is a real sense of uncertainty and loss when faced with a diagnosis of cancer.

Cancer changes people in ways that aren't always visible. In a way, your life has been interrupted by cancer, which may leave you with a feeling a loss of control or that your story is incomplete.

Many of you search for a sense of meaning or purpose behind your diagnosis. As you search for meaning in your experience, the process can help you deal with the stress and feelings of uncertainty and fear.

As you complete the intense experience of diagnosis and treatment, finding meaning in survivorship can help you live in the moment. You may gain a new sense of appreciation for living and a strong need to understand what greater purpose you may have to complete.

Everyone deals with these emotions differently. Finding joy and gratitude during this time isn't always easy, but set your intentions on giving it a try. Focus on the things that are good in your life. Ask yourself — Who am I? Why am I here? As you look for new meaning in your life, you may want to consider of few of these ideas:

Keep a journal of your thoughts and feelings — focus on what you are grateful for.
Use the creative process to uncover deep emotions using art, music or meditation — focus on newfound joy.
Identify the things that are most important in your life — start to plan for your future.
Talk to other survivors and share your experience on the topic of finding meaning in their cancer experience.
You may find that in the process of searching for meaning, you identify areas in your life that you'd like to change. Make a plan for how you'll do this. Remember to focus and channel your energy on those things that bring personal happiness and joy.

An excellent resource on this topic is a book titled "Train Your Brain ... Engage Your Heart ... Transform Your Life," by Amit Sood, M.D. Dr. Sood is the Director of Research and Practice — Complementary and Integrative Medicine at Mayo Clinic.
Many cancer survivors have told us that while they felt they had lots of information and support during their illness, once treatment stopped, they entered a whole new world - one filled with new questions. This booklet was written to share common feelings and reactions that many people just like you have had after treatment ended.

It also offers some practical tips to help you through this time. Use this booklet in whatever way works best for you. You can read it from beginning to end. Or you can just refer to the section you need.

Who is a Survivor?
This booklet uses the term "cancer survivor" to include anyone who has been diagnosed with cancer, from the time of diagnosis through the rest of his or her life. Family members, friends, and caregivers are also part of the survivorship experience.

You may not like the word, or you may feel that it does not apply to you, but the word "survivor" helps many people think about embracing their lives beyond their illness.

This booklet shares what we have learned from other survivors about life after cancer: practical ways of dealing with common problems and guidelines for managing your physical, social, and emotional health. When possible, we include specific information from research with cancer survivors.

While cancer is a major event for all who are diagnosed, it brings with it the chance for growth. As hard as treatment can be, many cancer survivors have told us that the experience led them to make important changes in their lives. Many say they now take time to appreciate each new day. They also have learned how to take better care of themselves and value how others care for them. Others draw from their experience to become advocates to improve cancer research, treatment, and care.

We hope that this booklet will serve as a resource and inspiration to you as you face forward to your life after cancer.