page contents

sites

Monday 5 August 2013

Acrylamide Increases Women's Breast Cancer Risk

Acrylamide Increases Women's Breast Cancer Risk About Information Biography

Source(google.com.pk)
Acrylamide Increases Women's Breast Cancer Risk

Acrylamide Increases Women's Breast Cancer Risk

Researchers from the Danish Cancer Society Research Center in Copenhagen have determined that acrylamide consumption – found with higher amounts in fried and grilled foods - significantly increases the risk of breast cancer among women.

The researchers followed 24,697 postmenopausal women as part of a Danish study between 1993 and 1997. Out of the population, 420 of the women developed breast cancer prior to 2001. Of these, 110 of the women died of breast cancer prior to 2009.

The study gauged the women's consumption of acrylamide by measuring their acrylamide hemoglobin and glycidamide hemoglobin levels in the bloodstream. The study found that higher levels of acrylamide and glycidamide hemoglobin in the women's bloodstream was associated with a higher risk of breast cancer.

Acrylamide Metabolites
Upon consumption of acrylamide, some of it forms glycidamide hemoglobin and some combines with hemoglobin to form acrylamide hemoglobin.

On average, the researchers found that higher levels of glycidamide hemoglobin in the blood was associated with a 63% higher risk of dying from all breast cancers, and more than double the risk of developing an estrogen receptor-positive tumor.

Acrylamide hemoglobin levels also increased the risk of death the risk of estrogen receptor-positive tumors.

The researchers concluded that "the present study indicates that pre-diagnostic exposure to acrylamide may be related to mortality among breast cancer patients and that this may especially concern the most endocrine related type of breast cancer."

Acrylamide linked to other cancers
Research over the past two decades has linked increased acrylamide consumption to a number of cancer types, including colorectal and endometrial cancers.

Acrylamide content in foods reported by the U.S. Food and Drug Administration has found that many fried and baked foods contain several hundred micrograms up to 2,500 micrograms per serving. Early research suggested that consumption of less than 0.2 micrograms per day was safe.

Acrylamide Sources
Acrylamides are produced when starches or sugars are cooked at high temperatures for an extended period. Potato chips, French fries, charred and grilled foods, and some caramelized high-heat baked goods have high levels. Cigarette smoke and roasted coffee also contains significant levels of acrylamides. Other data has found that smokers will have almost twice the levels of circulating acrylamide and glycidamide hemoglobin.

The prevalent issues that relate to increased risk of acrylamide intake stem from the foods we choose to eat, and how we cook them. A diet heavy in processed foods - including baked goods and processed meats - increases our intake of acrylamides. Foods that are pre-cooked, such as chips, cookies and any other fried or baked good will have higher acrylamide levels because the food manufacturers must either overcook or cook both the ingredients and the final goods before being packaged to prevent contamination. This double-cooking and over-cooking process produces more acrylamide content in the end product.

Many foods, such as nuts and seeds, are typically available in both their raw form or roasted forms. Roasted forms often taste better, but they also yield higher acrylamide content.

How we cook our food at home significantly relates to the amount of acrylamide in our diets. Foods cooked on grills or open flames will have more acrylamide content because the food is in contact with more heat. Foods that are fried will also have a higher content, because we typically fry our foods at high temperatures. Grilling or toasting our foods until they are blackened also produces higher acrylamide content in the food. This goes for toast as well as grilled cheese sandwiches, which can both be toasted lightly and still taste great.

Lowering acrylamide content in our diets means eating more fresh and raw foods, and cooking as minimally as possible. When we do cook, using the lowest temperatures possible, and being careful not to overcook the food will result in less acrylamide consumption. Lightly toasting or lightly grilling our foods will often render better tasting food as well as lower acrylamide levels.

Sodas, Fries, Snacks and Inactivity Raise Diabetes Risk

Sodas, Fries, Snacks and Inactivity Raise Diabetes Risk About Information Biography

Source(google.com.pk)
Sodas, Fries, Snacks and Inactivity Raise Diabetes Risk

Sodas, Fries, Snacks and Inactivity Raise Diabetes Risk

Researchers from the The Netherlands' Utrecht University Medical Center have determined in a large study that a diet rich in soft drinks, fries and snacks substantially increases the risk of type 2 diabetes.

The research followed 20,835 Dutch people. The researchers monitored the diets and diet patterns of the patients through questionnaires and cross-referenced these with the incidence of type 2 diabetes among the subjects.

The analysis allowed the researchers to separate the subjects' diets into two general patterns. The first pattern found a variety of foods, which included diets rich in fruits, vegetables and lean protein foods were accompanied by a lower risk of diabetes. Those subjects with a dietary pattern with increased intake of soft drinks, fries and snacks, however, had an increased incidence of type 2 diabetes.


The dietary analysis found that those in the highest quarter percentile of this dietary pattern (increased intake of soft drinks, fries and snacks) had a 70% higher incidence of type 2 diabetes than those in the lowest quarter percentile of this dietary pattern.

Additionally, type 2 diabetes increased to more than twice the incidence among subjects who were in the highest quarter percentile together with less physical activity.

Increased physical activity also decreased the incidence of type 2 diabetes among those who were in the highest quarter percentile of eating more soft drinks, fries and snacks. The risk of type 2 diabetes decreased from 70% more incidence to 35% more incidence in those who got more exercise.

The researchers concluded
A high score on a pattern high in soft drinks, fries and snacks and low in fruit and vegetables was associated with higher risk of type 2 diabetes in overweight and obese subjects especially among physically less active individuals.

The hard news on soft drinks
As we break down the increased risk to the type of consumption, we find that soft drinks have been linked with not just diabetes, but also cardiovascular diseases, metabolic syndrome (which includes diabetes and cardiovascular disease), non-alcoholic fatty liver disease, gout in men, obesity, increased dental caries and gum disease. Many have connected this to the increased level of sugar in the diet, and newer research has linked this to increased consumption of high fructose corn syrup (HFCS).

For example, in a recent study of over 2,700 Taiwanese teenagers, researchers from Taiwan's National Yang Ming University found that those who drank more beverages sweetened with sugar and HFCS had three to five times the risk of being obese, and double the risk of having gout when compared to those who did not drink sodas.

Fried risk
As for fries, research has also connected the eating of fried foods with increased cardiovascular disease, obesity and diabetes. Other risks include breast cancer, as we reported on a recent study showing the increased consumption of acrylamide is linked to greater levels of breast cancer.

Whether the acrylamide content is the only precipitating factor with fried foods has yet to be determined, but there is strong evidence pointing to overcooked oils becoming toxic in themselves. When many oils are heated beyond their smoke point, the fatty acids can convert to trans fats or other types of damaged fats. These can become peroxidized and form lipoperoxides within the body. These lipoperoxides will form greater levels of LDL and VLDL, and will damage the liver and blood vessels, forming atherosclerosis.

Illustrating this effect, in a recent study from the National Academy of Sciences of the Republic of Armenia, researchers found a link between type 2 diabetes and stroke in those with higher levels of lipid peroxidation.

A lethal combo
These two diet issues – increased consumption of refined sweeteners such as HFCS and eating fried foods – come together in the form of many of our snack foods. Many snacks are both sweetened with these refined sugars and deep-fried. These include many of our potato chips, crackers and others.

Baked snacks with little or no sugar should thus be considered healthier, but a survey of snacks in practically any store will reveal that healthier snacks - outside of fruits and vegetables - often require a bit more diligence to find.

Saturday 20 July 2013

30 Years of Breast Screening: 1.3 Million Wrongly Treated

30 Years of Breast Screening: 1.3 Million Wrongly Treated About Biography Information 

Source(google.com.pk)
30 Years of Breast Screening: 1.3 Million Wrongly Treated

30 Years of Breast Screening: 1.3 Million Wrongly Treated


The breast cancer industry's holy grail (that mammography is the primary weapon in the war against breast cancer) has been disproved. In fact, mammography appears to have CREATED 1.3 million cases of breast cancer in the U.S. population that were not there.

A disturbing new study published in the New England Journal of Medicine is bringing mainstream attention to the possibility that mammography has caused far more harm than good in the millions of women who have employed it over the past 30 years as their primary strategy in the fight against breast cancer.[i]

Titled "Effect of Three Decades of Screening Mammography on Breast-Cancer Incidence," researchers estimated that among women younger than 40 years of age, breast cancer was overdiagnosed, i.e. "tumors were detected on screening that would never have led to clinical symptoms," in 1.3 million U.S. women over the past 30 years. In 2008, alone, "breast cancer was overdiagnosed in more than 70,000 women; this accounted for 31% of all breast cancers diagnosed."


As we revealed in a previous article,[ii] the primary form of mammography-detected breast cancer is ductal carcinoma in situ (DCIS), also known as 'stage zero' or 'non-invasive breast cancer.' Unlike truly invasive cancer, which expands outward like the crab after which it was named (Greek:  Cancer = Crab), ductal carcinoma is in situ, i.e. situated, non-moving – an obvious contradiction in terms.

Also, DCIS presents without symptoms in the majority of women within which it is detected, and if left untreated will (usually) not progress to cause harm to women. Indeed, without x-ray diagnostic technologies, many if not most of the women diagnosed with it would never have known they had it in the first place. The journal Lancet Oncology, in fact, published a cohort study last year finding that even clinically verified "invasive" cancers appear to regress with time if left untreated:

[We] believe many invasive breast cancers detected by repeated mammography screening do not persist to be detected by screening at the end of 6 years, suggesting that the natural course of many of the screen-detected invasive breast cancers is to spontaneously regress.[iii]

The new study authors point out "The introduction of screening mammography in the United States has been associated with a doubling in the number of cases of early-stage breast cancer that are detected each year." And yet, they noted, only 6.5% of these early-stage breast cancer cases were expected to progress to advanced disease. DCIS and related 'abnormal breast findings,' in other words, may represent natural, benign variations in breast morphology. Preemptive treatment strategies, however, are still employed today as the standard of care, with mastectomy rates actually increasing since 2004.[iv]

The adverse health effects associated with overdiagnosis and overtreatment with lumpectomy, radiation, chemotherapy and hormone-suppressive treatments cannot be underestimated, especially when one considers the profound psychological trauma that follows each stage of diagnosis and treatment, and the additional physiological burdens such psychic injuries lead to, including up-regulation of multidrug resistance genes within cancer as a result of the increased adrenaline associated with the 'flight-or-fight' stress response.[v]

Also, it is now coming to light that chemotherapy and radiation actually increase the proportion of the highly malignant cancer stem cells to the relatively non-malignant daughter cells within the tumor colony. Much in the same way that conventional antibiotic agents will drive multidrug resistance within the subpopulation of surviving post-antibiotic bacteria, ensuring recurrence, conventional treatments also drive the surviving stem-cell enriched tumor populations into greater resistance and metastatic potential when it does inevitably recur. Or worse, radiation therapy may actually increase the 'stemness' of breast cancer cells making them 30 times more malignant (capable of forming new tumors).

If it is indeed true that DCIS, other abnormal breast findings, as well as clinically confirmed invasive breast cancer, either remain benign or regress when left untreated, the entire breast cancer industry, which is already deeply mired in cause-marketing conflicts of interest, must radically reform itself, or face massive financial and ethical liabilities vis-à-vis outdated and no longer "evidence-based" practices.

Another serious problem with mammography (and there are dozens of them) not addressed in this latest research finding concerns the unique carcinogenicity of the x-rays the technology employs. We now know that the 30 kVp radiation, colloquially known as "low energy" x-rays, are between 300-400% more carcinogenic than the "higher energy" radiation given off by atomic bomb blasts (200 kVp or higher).[vi]  Present day radiation risk models used to assess the known breast cancer risk associated with mammography against the purported benefits do not take into this profound discrepancy. In fact, these models were developed before DNA was even discovered.

Also, considering that breast cancer susceptibility genes, BRCA1/BRCA2, interfere with the DNA self-repair mechanisms needed to reduce the carcinogenicity associated with radiation exposure within those who carry these genetic variations, the harms associated with mammography may be exponentially higher than the conventional medical community presently understands and communicates to their patients.  Indeed, it is likely that x-ray based mammography screenings have been planting the seeds of future radiation-induced breast cancer within exposed populations.

With top-tier biomedical journals now publishing research diametrically opposed to the policies and recommendations of both governmental, non-governmental and industry-sponsored health organizations, the time is ripe for us to critically evaluate conventional medicine's conventional standard of care and to educate ourselves further to the true causes of cancer, and how to go about preventing and/or removing them.

Thursday 18 July 2013

Obesity Double Whammy: Sugary Sodas in BPA Cans and Plastic

Obesity Double Whammy: Sugary Sodas in BPA Cans and Plastic Biography

Source(google.com.pk)
Obesity Double Whammy: Sugary Sodas in BPA Cans and Plastic

Obesity Double Whammy: Sugary Sodas in BPA Cans and Plastic 

New research from New York State University has confirmed a link exists between Bisphenol A (BPA) and obesity. But there are a few caveats that reveal an even bigger link exposed in other research: The combination of sugary sodas in canned and plastic containers.

The NYSU medical researchers studied 2,838 kids between six and 19 years old, using the National Health and Nutritional Examination Survey between 2003-2008 (NHANES 2003-2008) The scientists compared the intake of the kids' urinary BPA levels with their BMI to determine the relative degree of obesity and general weight status. Out of the population, 1,047 qualified as obese and 590 of the kids were overweight. The researchers also cross-referenced the results with the kids' ages and ethnicity.

Their findings determined that while over 22% of kids with the most urinary BPA levels (highest quartile) were obese, only 10% of kids with the lowest BPA levels (lowest quartile) were obese.

More than twice the obesity rate is more than a strong association. The study's lead researcher Dr. Leonardo Trasande told HealthDay that, "BPA has been associated with adult obesity and heart disease," and the findings "raise further questions about the need to limit BPA exposure in children."


 
But the NYSU study also presented a wrinkle in the data. The association between BPA and obesity was primarily among teenagers of all races, and white children.

This has produced some skepticism regarding whether the relationship with BPA is solid enough, even though the obesity rates were more than twice for those with the most BPA in their urine overall, and other research has also found a definite link between hormone disruption and BPA, along with the potential for weight gain with higher BPA exposure.

For example, another recent study, this one from Shanghai's Jiao-Tong University School of Medicine, found that BPA exposure was related to higher levels of fat mass among women. The study tested 246 premenopausal women over 20 years old who were otherwise healthy.

Most convincing is another study, published this past July from the West Virginia University School of Medicine. This study also found a link between BPA and obesity, but this link was consistent across all genders and races. Interestingly, this study also used the National Health and Nutritional Examination Survey 2003-2008 data to collect the findings.

And the findings were just as stark. Those with the highest levels of BPA in their urine were nearly 70% more likely to be obese.

The difference between the West Virginia University study and the NYSU study? The West Virginia study tracked adult men and women, while the NYSU tracked kids aged six through 19 years old.

As we correlate the data from these two studies, we find that the connection between BPA and obesity is evident amongst all teenagers and all adults. The data is robust and the evidence clear.

This leaves the only yet-to-understand group being younger non-white children.

One of the confounders not discussed or eliminated in the research was breastfeeding. A 2012 study from Australia's Flinders University School of Medicine found that children who were breastfed were significantly less likely to be obese during their childhood than those who did not breastfeed.

Other childhood confounders also exist. Physical activity, diet of the mother and childhood diet are also factors that prove difficult to eliminate.

Sugary Sodas
One of the most important factors to be considered between children and teenagers is the consumption of sugary sodas. Sodas provide the most popular vehicle for BPA consumption – from soda cans to plastic bottles of cola and other drinks.

In a 2011 study by the U.S. Centers of Disease Control, kids between the ages of 12 and 19 – teenagers – were the largest consumers of sugary sodas among all ages. Teenage boys consume an average of 273 kcal of soda per day, and teenage girls consume an average of 171 kcal of sugary drinks a day. This contrasts greatly from kids between six and eleven years old, who only consume an average of 112 kcal (girls) to 141 kcal (boys).

Adults aged 20 to 39 years old also drink less sugary drinks than teenagers, but not by much. They drink between 252 kcal (men) and 138 kcal (women). This is still dramatically higher than children, and almost at par with the teenagers.

This correlation indicates a clear relationship between BPA, sugary drinks and obesity, because after all, most sugary sodas are consumed in BPA containers. And numerous studies have found a link between obesity and the consumption of sugary sodas.

This connection is especially definite for sodas sweetened with high fructose corn syrup (HFCS). For example, in a study from Taipei's National Yang Ming University, kids who drank more HFCS sodas were between three and five times more likely to be obese than those who drank the least amount of HFCS-sweetened sodas.

What we find amongst this combination of research is what we might call a double-whammy: A sugary HFCS soda in a container made with BPA that disrupts hormones and stimulates fat cell growth. This double-whammy is what we are feeding our kids. It is also what our young adults are hooked on - a sugary sweet HFCS caffeine buzz in contaminated containers compounded by overeating and less activity. This combination is quickly turning America into, well, the land of blimps.

REFERENCES
Trasande L, Attina TM, Blustein J. Association Between Urinary Bisphenol A Concentration and Obesity Prevalence in Children and Adolescents JAMA. 2012;308(11):1113-1121.
Zhao HY, Bi YF, Ma LY, Zhao L, Wang TG, Zhang LZ, Tao B, Sun LH, Zhao YJ, Wang WQ, Li XY, Xu MY, Chen JL, Ning G, Liu JM. The effects of bisphenol A (BPA) exposure on fat mass and serum leptin concentrations have no impact on bone mineral densities in non-obese premenopausal women. Clin Biochem. 2012 Sep 9. pii: S0009-9120(12)00505-X.
Scott JA, Ng SY, Cobiac L. The relationship between breastfeeding and weight status in a national sample of Australian children and adolescents. BMC Public Health. 2012 Feb 7;12:107. doi: 10.1186/1471-2458-12-107.
Ogdan CL, Kit BK, Carroll MD, Park S. Consumption of Sugar Drinks in the United States, 2005-2008. NCHS Data Brief. 2011 Aug; 71.
Lin WT, Huang HL, Huang MC, Chan TF, Ciou SY, Lee CY, Chiu YW, Duh TH, Lin PL, Wang TN, Liu TY, Lee CH. Effects on uric acid, body mass index and blood pressure in adolescents of consuming beverages sweetened with high-fructose corn syrup. Int J Obes (Lond). 2012 Aug 14.
Nikpartow N, Danyliw AD, Whiting SJ, Lim HJ, Vatanparast H. Beverage consumption patterns of Canadian adults aged 19 to 65 years. Public Health Nutr.  2012 Aug 29:1-10.
Bray GA. Fructose and Risk of Cardiometabolic Disease. Curr Atheroscler Rep.

Sugar, Inflammation, Angiogenesis & Cancer

Sugar, Inflammation, Angiogenesis & Cancer Biography

Source(google.com.pk)
Sugars and the inflammation and acidic environments they create are important constituents of the local environment of tumors. In most types of cancer inflammatory conditions are present before malignancy changes occur. "Smoldering inflammation in tumor microenvironments has many tumor-promoting effects. Inflammation aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents."[4]

The entire subject of inflammation, angiogenesis, sugar and cancer is crucial to understanding the links between cancer and the foods we eat. When we begin to zero in on inflammation and the acid conditions caused by excessive consumption of simple sugars, including fructose and high-fructose corn syrup, we begin to see more clearly how food and cancer are intimately connected.

In July 2012 a leading U.S. cancer lobby group urged the surgeon general to conduct a sweeping study of the impact of sugar-sweetened beverages on consumer health, saying such drinks play a major role in the nation's obesity crisis and require a U.S. action plan. In a letter to U.S. Health Secretary Kathleen Sebelius, the American Cancer Society's advocacy affiliate called for a comprehensive review along the lines of the U.S. top doctor's landmark report on the dangers of smoking in 1964.

The ruckus is about the growing connection between high sugar intake, mineral depletion, dehydration, diabetes, heart disease and cancer. Sugar causes cancer because the tendency of high-carbohydrate consumers tends toward dehydration, which is pro-inflammatory and thus pro-cancer.[5]

Pancreatic cancer cells use the sugar fructose to help tumors grow more quickly.[6] Tumor cells fed both glucose and fructose used the two sugars in two different ways, a team at the University of California Los Angeles found. Their findings, published in the journal Cancer Research, helps explain other studies that have linked fructose intake with pancreatic cancer, one of the deadliest cancer types. Researchers concluded that anyone wishing to curb their cancer risk should start by reducing the amount of sugar they eat.

This is the first time a link has been shown between fructose and cancer proliferation. "In this study we show that cancers can use fructose just as readily as glucose to fuel their growth," said Dr. Anthony Heaney of UCLA's Jonsson Cancer Center, the study's lead author. "The modern diet contains a lot of refined sugar including fructose and it's a hidden danger implicated in a lot of modern diseases, such as obesity, diabetes and fatty liver." While this study was done on pancreatic cancer, these findings may not be unique to that cancer type, Heaney said. "These findings show that cancer cells can readily metabolize fructose to increase proliferation."

It has been known for decades that cancer cells thrive on glucose. Moreover, foods that cause a sharp rise in blood glucose (i.e. foods with a high-glycemic index ranking) trigger the secretion of insulin and insulin growth factor (IGF-1), two hormones that also promote cancer growth.

Researchers using rats have found that a low-carbohydrate high-protein diet reduces blood glucose, insulin, and glycolysis, slows tumor growth, reduces tumor incidence, and works additively with existing therapies without weight loss or kidney failure.[7] Such a diet, therefore, has the potential of being both a novel cancer prophylactic and treatment.

Otto Warburg

Dr. Otto Warburg's 1924 paper, "On metabolism of tumors," stated, "Summarized in a few words, the prime cause of cancer is the replacement of the respiration of oxygen in normal body cells by a fermentation of sugar." If you've ever made wine, you'll know that fermentation requires sugar. The metabolism of cancer is approximately eight times greater than the metabolism of normal cells. Doctors have known for a long time that cancer metabolizes much differently than normal cells. Normal cells need oxygen. Cancer cells disregard oxygen when adequate glucose is present.

Warburg's hypothesis was of course that cancer growth was caused when cancer cells converted glucose into energy without using oxygen. Healthy cells make energy by converting pyruvate and oxygen. The pyruvate is oxidized within a healthy cell's mitochondria, and Warburg theorized that since cancer cells don't oxidize pyruvate, cancer must be considered a mitochondrial dysfunction.

Most, if not all, tumor cells have a high demand on glucose compared to benign cells of the same tissue and conduct glycolysis even in the presence of oxygen (the Warburg effect). In addition, many cancer cells express insulin receptors (IRs) and show hyperactivation of the IGF1R-IR (IGF-1 receptor/ insulin receptor) pathway. Evidence exists that chronically elevated blood glucose, insulin and IGF-1 levels facilitate tumor genesis and worsen the outcome in cancer patients.

Treating diabetic patients, A. Braunstein observed in 1921 that in those who developed cancer, glucose secretion in the urine disappeared. One year later, R. Bierich described the remarkable accumulation of lactate in the micromilieu of tumor tissues and demonstrated lactate to be essential for invasion of melanoma cells into the surrounding tissue. One year after that Warburg began his experiments that eventually ended for him with a Nobel Prize.

Sugar turns the body into a suitable breeding ground for viruses, bacteria, fungi and cancer by devastating the immune system.

Knowing that one's cancer needs sugar, does it make sense to feed it sugar? Does it make sense to have a high-carbohydrate diet?

Of the four million cancer patients being treated in America today, hardly any are offered any scientifically guided nutrition therapy beyond being told to "just eat good foods." Oncologists have no shame about this, insisting that diet has little to do with cancer.

Cancer patients should not be feeding their cancers like they would feed cotton candy to their grandchildren. As long as this cancer cell can get a regular supply of sugar—or glucose—it lives and thrives longer than it should. Now imagine oncologists getting enlightened and they start to advise their patients to starve the cancer instead of bombing it to smithereens with chemotherapy and radiation treatments all the while feeding the cancer with sugar!
Sugar, Inflammation, Angiogenesis & Cancer
  Sugar, Inflammation, Angiogenesis & Cancer
  Sugar, Inflammation, Angiogenesis & Cancer
  Sugar, Inflammation, Angiogenesis & Cancer
  Sugar, Inflammation, Angiogenesis & Cancer
  Sugar, Inflammation, Angiogenesis & Cancer
 Sugar, Inflammation, Angiogenesis & Cancer
Sugar, Inflammation, Angiogenesis & Cancer

Suppress/ Delay/ Slow/ Kill Cancer

Suppress/ Delay/ Slow/ Kill Cancer Biography

Source(google.com.com.pk)
Suppress/ Delay/ Slow/ Kill Cancer
Carbohydrates of one of the three macronutrients—the other two being fats and protein. There are simple carbohydrates and complex carbohydrates. Simple carbohydrates include sugars found naturally in foods such a fruits and fruit juices, sodas, some vegetables, white bread, white rice, pasta, milk and milk products, most snack foods, sweets, etc. But let us not forget the simple sugars added to foods during processing and refining that we may have no awareness of. It's the simple sugars that get most of the credit for causing the insulin response and glycation-associated inflammation that can lead to cancer.

Thus by reducing the amount of simple carbohydrates in the diet, the emergence of cancer can be suppressed or delayed, or the proliferation of already existing tumor cells can be slowed down, stopped and reversed by depriving the cancer cells of the food they need for survival.

Drs. Rainer Klement and Ulrike Kammerer conducted a comprehensive review of the literature involving dietary carbohydrates and their direct and indirect effect on cancer cells, which was published in October 2011 in the journal Nutrition and Metabolism, concluding that cancers are so sensitive to the sugar supply that cutting that supply will suppress cancer.[3] "Increased glucose flux and metabolism promotes several hallmarks of cancer such as excessive proliferation, anti-apoptotic signaling, cell cycle progression and angiogenesis."

Also, eating white sugar (or white anything) causes magnesium mineral deficiencies because the magnesium has been removed in the processing, making sugar a ripe target as a major cause of cancer because deficiencies in magnesium are not only pro-inflammatory but also pro-cancer.

More Ways to Cause Cancer with Sugar

High fructose corn syrup (HFCS) causes cancer in a unique way because much of it is contaminated with mercury due to the complex way it is made. High fructose corn syrup causes selenium deficiencies because the mercury in it binds with selenium, driving selenium levels downward. Selenium is crucial for glutathione production and its deficiency in soils tracks mathematically with cancer rates. Selenium and mercury are also eternal lovers having a strong affinity to bond with each other.

Already touched on briefly, excess sugar spikes insulin levels and insulin's eventual depletion. High insulin and insulin-like growth factor (IGF-1) are needed for the control of blood sugar levels that result from chronic ingestion of high-carbohydrate meals (like the typical American diet, that is full of grains and sugars). Increased insulin levels are pro-inflammatory and pro-cancer and can directly promote tumor cell proliferation via the insulin/ IGF-1 signaling pathway.

When it comes to breast cancer, insulin is no friend. One of the biggest reasons is due to the fact that both normal breast cells and cancer cells have insulin receptors on them. When insulin attaches to its receptor, it has the same effect as when estrogen attaches to its receptor: it causes cells to start dividing. The higher your insulin levels are, the faster your breast cells will divide; the faster they divide, the higher your risk of breast cancer is and the faster any existing cancer cells will grow.

There's also another detriment that high insulin levels can inflict. It makes more estrogen available to attach to the estrogen receptors in breast tissue. Insulin regulates how much of the estrogen in your blood is available to attach to estrogen receptors in your breast tissue. When estrogen travels in the blood, it either travels alone seeking an estrogen receptor, or it travels with a partner, a protein binder, that prevents it from attaching to an estrogen receptor. Insulin regulates the number of protein binders in the blood. So, the higher your insulin levels are, the fewer the number of protein binders there will be and therefore the more free estrogen that will be available to attach to estrogen receptors.

In other words, when your insulin levels are up, free-estrogen levels are up, and both of them speed up cell division. That's why high insulin levels increase your risk of breast cancer so much. Eating sugar increases your risk of breast cancer in another way. It delivers a major blow to your immune system with the force of a prizefighter.

Dr. Horner talks about a study conducted by Harvard Medical School (2004) that found that women who, as teenagers, ate high-glycemic foods that increased their blood glucose levels had a higher incidence of breast cancer later in life. "So, encouraging your teenage daughter to cut back on sugar will help her to lower her risk of breast cancer for the rest of her life," she said.

Cancer & Sugar - Strategy for Selective Starvation of Cancer

Cancer & Sugar - Strategy for Selective Starvation of Cancer Biography

Source(google.com.pk)
According to researchers at the University of California, San Francisco, sugar poses a health risk—contributing to around 35 million deaths globally each year. So high is sugar's toxicity that it should now be considered a potentially toxic substance like alcohol and tobacco. Its link with the onset of diabetes is such that punitive regulations, such as a tax on all foods and drinks that contain "added'' sugar, are now warranted, the researchers concluded. They also recommend banning sales in or near schools, as well as placing age limits on the sale of such products.

Sugar's harmful effects do not stop at diabetes, metabolic syndrome, hyper- and hypoglycemia, GERD and heart disease. Sugar and cancer are locked in a death grip, yet oncologists often fail to do what's necessary to stop their patients from feeding their cancers with sweets.

Whereas many within the mainstream medical community insist on promoting the belief that the link between certain types of food with an increased risk of cancer is "weak" or only "nominally significant." They believe that research "linking foodstuffs to cancer reveals no valid medical patterns." We also find such superficial attitudes promoted in the medical press-all of which lack any kind of medical depth.


 
An increasing number of medical scientists and many alternative practitioners know that the most logical, effective, safe, necessary and inexpensive way to treat cancer is to cut off the supply of food to tumors and cancer cells, starving them with a lack of glucose. The therapeutic strategy for selective starvation of tumors by dietary modification (ketogenic diet) is one of the principle forms of therapy that is necessary for cancer patients to win their war on cancer.

Researchers at Huntsman Cancer Institute in Utah were one of the first to discover that sugar "feeds" tumors. The research published in the journal Proceedings of the National Academy of Sciences said, "It's been known since 1923 that tumor cells use a lot more glucose than normal cells. Our research helps show how this process takes place, and how it might be stopped to control tumor growth," says Don Ayer, Ph.D., a professor in the Department of Oncological Sciences at the University of Utah.

Dr. Thomas Graeber, a professor of molecular and medical pharmacology, has investigated how the metabolism of glucose affects the biochemical signals present in cancer cells. In research published June 26, 2012 in the journal Molecular Systems Biology, Graeber and his colleagues demonstrate that glucose starvation—that is, depriving cancer cells of glucose—activates a metabolic and signaling amplification loop that leads to cancer cell death as a result of the toxic accumulation of reactive oxygen species (ROS).[1]

Refined sugars are strongly linked to cancer, not only as a cause of it but also as something that feeds the cancer cells once a person has the disease—Nothing could be more important to consider in the attempt to improve the outcome of cancer treatments. The kinds of sugar so prevalent in today's standard American diet lead to cancer directly by causing inflammation throughout the body but in some places more than others depending on the individual and their constitution. Listen to this video and hear how simple this all really is. Once cancer cells are established in the body, they depend on steady glucose availability in the blood for their energy; they are not able to metabolize significant amounts of fatty acids or ketone bodies,[2]. so they need sugar.

Cancer & Sugar - Strategy for Selective Starvation of Cancer 

Cancer & Sugar - Strategy for Selective Starvation of Cancer 

Cancer & Sugar - Strategy for Selective Starvation of Cancer 

Cancer & Sugar - Strategy for Selective Starvation of Cancer 

Cancer & Sugar - Strategy for Selective Starvation of Cancer 

Cancer & Sugar - Strategy for Selective Starvation of Cancer 

Cancer & Sugar - Strategy for Selective Starvation of Cancer 

Cancer & Sugar - Strategy for Selective Starvation of Cancer 

Cancer & Sugar - Strategy for Selective Starvation of Cancer 

Cancer & Sugar - Strategy for Selective Starvation of Cancer 

Cancer & Sugar - Strategy for Selective Starvation of Cancer